
An Inquiry on Finite State Machines… 1

An Inquiry on Finite State Machines and their use in Videogames

Micah S. Thompson

University of Advancing Technology

GPE230: Gameplay Programming Implementation

Professor Blake Ratliff

March 21, 2024

An Inquiry on Finite State Machines… 2

An Inquiry on Finite State Machines and their use in Videogames

 On the rise in the 1980s and now already dominating the entertainment industry, video

games are a form of media that is truly revolutionary. Each passing year seems to be a testament

to the development of technology, and games are no different. Video games, without any doubt,

have evolved in many ways. From graphics to more and more complex mechanics to game

artificial intelligence, it is clear that this phenomenon is not dying anytime soon. With the recent

rise of more complex neural networks and artificial intelligence algorithms, note that from here

on out, the terms “artificial intelligence” and “game intelligence” will refer to the same thing: the

perceived intelligence of entities, actors, or controllers in a video game.

 Finite state machines (FSMs) are algorithms designed to switch to a fixed value (a state)

based on a determining factor, or a set of factors (Astuti et al., 2022). Video games—like any

program—are a series of instructions, variables, functions, and algorithms that produce a digital

world. Applying this logic to game objects (entities), finite state machines create an illusion of

intelligence inside the game world (Feiyu et al., 2013). Note that state machines are not limited

to game intelligence. As Astuti et al. (2022) demonstrate, FSMs can apply to story progression.

They also have many other uses outside the sphere of game programming.

 It can be surmised that even the most complex intelligence algorithms use some form of

state machine. Some of these algorithms are created to play a game itself. However, without

direct access to the game data, we must find an alternative solution. Perez-Liebana et al. (2016)

describe an algorithm capable of capturing the data rendered to the screen and determining which

inputs to trigger while playing a game. While not fitting the exact description of a finite state

An Inquiry on Finite State Machines… 3

machine, we can hypothesize that some form of state machine, perhaps one more hierarchical or

one using machine learning, is or could be used in such an algorithm.

 Combining the idea of using an algorithm to play a game and then applying that to an

artificial intelligence that must go head-to-head with the player is why finite state machines have

struck a chord with game developers. In essence, it is what summarizes just about any game AI.

However, a game intelligence that learns from the player is not a new technique. Tekken 5: Dark

Resurrection, a fighting game, would store the player’s moves inside a file (Feiyu et al., 2013). A

game intelligence could use a state machine to determine what combat move it must make to

counter the player’s attack or go on the offensive. Finite state machines are simple yet versatile.

This versatility shows how they have established such importance in game programming and

have been the de facto solution for game intelligence programming and development.

 While playing a game, it might be easy to piece together how an enemy or another non-

playable character (NPC) might work under the hood. However, attempting to map this behavior

to an FSM diagram might appear daunting or impossible. With a bit of critical thinking, it can be

done. For research, we will investigate two games, Genshin Impact and Honkai: Star Rail, and

determine what a hypothetical finite state machine might look like for the AI of the enemies in

both games and Star Rail’s auto-battle feature. Both games are published by the company

HoYoverse. They may appear similar but, both take an approach to their mechanics differently.

 Starting with Genshin Impact, it is significant to note a few things. First, there are many

characters, each with unique elemental and combat abilities. Some characters may deploy an object

on the field. This object (or entity) may serve many purposes. It may deal damage over time (DoT),

or maybe it will heal the player, or maybe it could be a distraction for the enemy. Looking at Amber,

An Inquiry on Finite State Machines… 4

one of the first companions you meet in the game, we can

see that she will deploy her “Barron Bunny” on the field.

This cute little doll will perform a little dance, attracting

enemies towards it, allowing our cute bunny-themed archer

to snipe them from a distance. Barron bunny will also

explode after a few seconds, dealing damage to enemies and

setting them ablaze. From this, we can hypothesize that our enemy intelligence has a target variable,

allowing them to target the player or another entity.

 Apart from Amber’s Barron Bunny, enemies will also target Ganyu’s (another character)

Ice Lotus. However, they do not attack Guoba, Xiangling’s

companion. Therefore, we can hypothesize that certain entities

cannot be targeted by enemies. Not all enemies will go after

these entities, but for simplicity’s sake, our diagram won’t

account for those higher-level enemies. When an enemy spots

a target or is interrupted by an attack, they will chase after the

target. Therefore they must have a chase and attack state.

Enemies also are either idle in one location, or are patrolling an

area, so they must have two passive states: idle and patrolling. If an enemy no longer sees the

target, it will return to its starting position and return to the idle or patrolling state. An enemy will

only attack the player if they are close enough. If not, they will return to chasing the player.

Figure 1. Abyss Mage attacking Amber's
Barron Bunny.

Figure 2. Ganyu attacking a Lawachurl
from too far away.

An Inquiry on Finite State Machines… 5

To lay it out, the enemy will start in an idle or

patrolling state where it will sit still or will patrol an area.

If it sees a target or gets attacked, it will enter the chase

state and move towards the target’s position. If the

enemy does not see the target, it will re-enter the idle or

patrolling state. Likewise, if the target is within range,

the enemy will begin the attack animation. If not in

range, the enemy will continue to chase the player.

With Honkai: Star Rail being a turn-based game,

the AI will function differently. There is a basic form of

intelligence for enemies in the open world. Enemies are

either set to an idle or patrolling state. If the player enters

a specific range, the enemy will notice them. A meter

above their head will slowly fill up. Once the player is

detected, the enemy will chase the player. Once our enemy has caught up to the player they will

attack, and if they hit the player, a combat instance will occur. If an enemy is attacked by the player,

the game will also open a combat instance.

In the combat instance, the AI doesn’t necessarily need to think too much. Being a turn-

based game, the action order determines who gets to attack at a given time. Characters in the

game have skill points and energy, this allows the player to pick from a range of attack options

during their turn. Enemies generally have more than one attack they can use, so one could

hypothesize that they have a similar system to the player. This unknown variable, or set of

variables, will be known as x. For example, a Voidranger: Reaver (“Reaver”) will start by

Figure 3. A basic hypothetical FSM Diagram for Genshin
Impact's AI.

An Inquiry on Finite State Machines… 6

attacking a single character. After the first

attack, assuming that x has charged up, the

Reaver will do an Area of Effect (AoE)

targeting multiple characters. It is important to

know that x itself is different for every enemy.

With each enemy having different effects

and abilities, we will create a very rough basis for

what a potential finite state machine may look

like. This diagram will be refined to provide an

example of the game’s auto-battle feature.

Essentially, Figure 6 represents a simple if-else

statement. If x is equal to zero, we carry out a

default action. If not, we will carry out an

advanced action.

 Honkai: Star Rail’s auto-battle system allows

the player to press a button and let a battle play out,

without the need to interact with anything. This

mechanic is useful for gathering resources and level-

Figure 4. A basic hypothetical FSM Diagram for Honkai: Star
Rail’s open world AI.

Figure 6. Proposed enemy logic within a combat
instance.

Figure 5. A Voidranger: Reaver attacking both a single
character and multiple characters.

An Inquiry on Finite State Machines… 7

up materials, a task that can be very time-consuming. The player has access to character

information such as their energy level, health (HP), and other statistics such as attack (ATK),

critical attack rate and damage (CRIT Rate and CRIT DMG), and speed (SPD, mainly used by

the action order to determine which character or which enemy should act first). As

aforementioned, the player also has access to enemy information as well. However, the auto-

battle feature does not. This means if an enemy has enough HP left to be killed with a basic

attack, the auto-battle will still cast a character’s ultimate attack (“ultimate”) if they have enough

energy.

Two diagrams are proposed. Figure 7 will show a base template on what the auto-battle feature

may take into consideration when active. Figure 8 will propose a finite state machine for Fu

Xuan, a Preservation unit that can protect and heal

the team of characters on the field.

Figure 7. Proposed Auto-Battle Feature Diagram.

Figure 8. Proposed Auto-Battle
Intelligence for the Character Fu Xuan.

An Inquiry on Finite State Machines… 8

 Finite state machines are a highly structured way to map out game intelligence, so it is

critical to adhere to strict rules when creating one. Here are three proposed practices to use

1) avoid redundancy, 2) make a base for all NPCs, and 3) make detailed documentation. The

practice of avoiding redundancy allows for fewer issues down the line. When writing functions,

it is important to avoid repeating the same code. The purpose of functions is to consolidate it. If

something needs to be written twice, then collapse it into its own function. Apply this practice to

the states in the state machine; if one state is similar to another, consolidate them.

 With the many enemies or other non-playable characters a game may have, it is necessary

to have a base intelligence class. This class should contain all the functions for these NPCs to

function. Sometimes it may be necessary to place a function inside the game intelligence for one

specific NPC. But if it is something that can be called by other NPCs, then place it in the base

class. Lastly, make detailed documentation. This is not just a courtesy or good practice. It is

essential to your future self, other programmers, and even game designers. If something is well

documented, it is easy to troubleshoot and tweak.

 The use of finite state machines in the games industry proves their robust and critical role

in creating a believable game world to immerse players into. They provide a series of checks,

balances, and intelligence into the very soul of a game. Finite state machines have proven to be

the building blocks of nearly every successful game on today’s market, and they will only keep

getting more advanced. The use of a finite machine provides nearly infinite possibilities and

ways to utilize them in the industry and even outside of the games industry.

An Inquiry on Finite State Machines… 9

References

Astuti, Dwi et al. (2022). Application of the Finite State Machine Method to Determine the End

of the Story Based on User Choice in Multiple Role Playing Games. International Journal

of Computer and Information System (IJCIS)

Feiyu, Lu et al. (2013). Fighting Game Artificial Intelligence Competition Platform. Intelligent

Computer Entertainment Laboratory, Ritsumeikan University.

Perez-Liebana, Diego et al. (2016). General Video Game AI: Competition, Challenges, and

 Opportunities. Association for the Advancement of Artificial Intelligence

Smolyakov, Ivan Y., & Belyaev, Sergey A. (2019). Design of the Software Architecture for

Starcraft Video Game on the Basis of Finite State Machines. Saint-Petersburg

Electrotechnical University. IEEE.

Honkai: Star Rail Walkthrough Team. (2023). Fu Xuan Best Builds and Teams: Honkai: Star

Rail. Game8. https://game8.co/games/Honkai-Star-Rail/archives/405760#hl_7

